skip to main content


Search for: All records

Creators/Authors contains: "Cheng, Runxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Configuration changes are among the dominant causes of failures of large-scale software system deployment. Given the velocity of configuration changes, typically at the scale of hundreds to thousands of times daily in modern cloud systems, checking these configuration changes is critical to prevent failures due to misconfigurations. Recent work has proposed configuration testing, Ctest, a technique that tests configuration changes together with the code that uses the changed configurations. Ctest can automatically generate a large number of ctests that can effectively detect misconfigurations, including those that are hard to detect by traditional techniques. However, running ctests can take a long time to detect misconfigurations. Inspired by traditional test-case prioritization (TCP) that aims to reorder test executions to speed up detection of regression code faults, we propose to apply TCP to reorder ctests to speed up detection of misconfigurations. We extensively evaluate a total of 84 traditional and novel ctest-specific TCP techniques. The experimental results on five widely used cloud projects demonstrate that TCP can substantially speed up misconfiguration detection. Our study provides guidelines for applying TCP to configuration testing in practice. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Large-scale cloud services deploy hundreds of configuration changes to production systems daily. At such velocity, con- figuration changes have inevitably become prevalent causes of production failures. Existing misconfiguration detection and configuration validation techniques only check configu- ration values. These techniques cannot detect common types of failure-inducing configuration changes, such as those that cause code to fail or those that violate hidden constraints. We present ctests, a new type of tests for detecting failure- inducing configuration changes to prevent production failures. The idea behind ctests is simple—connecting production sys- tem configurations to software tests so that configuration changes can be tested in the context of code affected by the changes. So, ctests can detect configuration changes that ex- pose dormant software bugs and diverse misconfigurations. We show how to generate ctests by transforming the many existing tests in mature systems. The key challenge that we address is the automated identification of test logic and oracles that can be reused in ctests. We generated thousands of ctests from the existing tests in five cloud systems. Our results show that ctests are effective in detecting failure-inducing configuration changes before deployment. We evaluate ctests on real-world failure-inducing configura- tion changes, injected misconfigurations, and deployed con- figuration files from public Docker images. Ctests effectively detect real-world failure-inducing configuration changes and misconfigurations in the deployed files. 
    more » « less
  4. null (Ed.)
  5. We introduce a novel multimodal machine translation model that utilizes parallel visual and textual information. Our model jointly optimizes the learning of a shared visual-language embedding and a translator. The model leverages a visual attention grounding mechanism that links the visual semantics with the corresponding textual semantics. Our approach achieves competitive state-of-the-art results on the Multi30K and the Ambiguous COCO datasets. We also collected a new multilingual multimodal product description dataset to simulate a real-world international online shopping scenario. On this dataset, our visual attention grounding model outperforms other methods by a large margin. 
    more » « less